Abstract

Abstract The relationship between variations of Indo-Pacific sea surface temperatures (SSTs) and Australian springtime rainfall over the last 30 years is investigated with a focus on predictability of inter–El Niño variations of SST and associated rainfall anomalies. Based on observed data, the leading empirical orthogonal function (EOF) of Indo-Pacific SST represents mature El Niño conditions, while the second and fourth modes depict major east–west shifts of individual El Niño events. These higher-order EOFs of SST explain more rainfall variance in Australia, especially in the southeast, than does the El Niño mode. Furthermore, intense springtime droughts tend to be associated with peak warming in the central Pacific, as captured by EOFs 2 and 4, together with warming in the eastern Pacific as depicted by EOF1. The ability to predict these inter–El Niño variations of SST and Australian rainfall is assessed with the Australian Bureau of Meteorology dynamical coupled model seasonal forecast system, the Predictive Ocean and Atmospheric Model for Australia (POAMA). A 10-member ensemble of 9-month hindcasts was generated for the period 1980–2006. For the September–November season, the leading 2 EOFs of SST are predictable with lead times of 3–6 months, while SST EOF4 is predictable out to a lead time of 1 month. The teleconnection between the leading EOFs of SST and Australian rainfall is also well depicted in the model. Based on this ability to predict major east–west variations of El Niño and the teleconnection to Australian rainfall, springtime rainfall over eastern Australia, and major drought events are predictable up to a season in advance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.