Abstract

In Orion BN/KL, proper motions of 7 mm vibrationally-excited SiO masers trace rotation of a nearly edge-on disk and a bipolar wide-angle outflow 10-100 AU from radio Source I, a binary young stellar object (YSO) of ~20 Msun. Here we map ground-state 7 mm SiO emission with the Very Large Array and track proper motions over 9 years. The innermost and strongest emission lies in two extended arcs bracketing Source I. The proper motions trace a northeast-southwest bipolar outflow 100-1000 AU from Source I with a median 3D motion of ~18 km/s. An overlying distribution of 1.3 cm H2O masers betrays similar flow characteristics. Gas dynamics and emission morphology traced by the masers suggest the presence of a magnetocentrifugal disk-wind. Reinforcing evidence lies in the colinearity of the flow, apparent rotation across the flow parallel to the disk rotation, and recollimation that narrows the flow opening angle ~120 AU downstream. The arcs of ground-state SiO emission may mark the transition point to a shocked super-Alfvenic outflow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.