Abstract

Stuart-Landau oscillators can be coupled so as to either preserve or destroy the rotational symmetry that the uncoupled system possesses. We examine some of the simplest cases of such couplings for a system of two nonidentical oscillators. When the coupling breaks the rotational invariance, there is a qualitative difference between oscillators wherein the phase velocity has the same sign (termed co-rotation) or opposite signs (termed counter-rotation). In the regime of oscillation death the relative sense of the phase rotations plays a major role. In particular, when rotational invariance is broken, counter-rotation or phase velocities of opposite signs appear to destabilize existing fixed points, thereby preserving and possibly extending the range of oscillatory behavior. The dynamical "frustration" induced by counter-rotations can thus suppress oscillation quenching when coupling breaks the symmetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.