Abstract

Drying a droplet containing microparticles results in the deposition of particles in various patterns, including the so-called "coffee-ring" pattern. The particle deposition is dependent on the internal flow dynamics, such as the capillary flow and Marangoni vortex (MV), of the droplet. Particle migration and self-assembly on a substrate are interesting phenomena that have critical implications in many applications such as inkjet printing, coating, and many other droplet-based industrial processes. In this work, we observed the formation of bands of particles in a rotating MV during the evaporation of a water droplet containing particles. We investigated the mechanism underlying the formation of banded MV caused by capillary meniscus forces between two particles near the air-liquid interface. In particular, we show that the banded MV can be manipulated by tuning the surfactant concentration and particle concentration. Our findings would provide a new direction in understanding the particle deposition pattern of a colloidal droplet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.