Abstract

The Nernst effect is a fundamental thermoelectric conversion phenomenon that was deemed to be possible only in systems with magnetic field or magnetization. In this work, we propose a novel dynamical chiral Nernst effect that can appear in two-dimensional van der Waals materials with chiral structural symmetry in the absence of any magnetic degree of freedom. This unconventional effect is triggered by time variation of an out-of-plane electric field, and has an intrinsic quantum geometric origin linked to not only the intralayer center-of-mass motion but also the interlayer coherence of electronic states. We demonstrate the effect in twisted homobilayer and homotrilayer transition metal dichalcogenides, where the strong twisted interlayer coupling leads to sizable intrinsic Nernst conductivities well within the experimental capacity. This work suggests a new route for electric control of thermoelectric conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.