Abstract

We present a numerical study of the charge dynamical structure factor N(k,omega) of a one-dimensional (1D) ionic Hubbard model in the Mott insulator phase. We show that the low-energy spectrum of N(k,omega) is expressed in terms of the spin operators for the spin degrees of freedom. Numerical results of N(k,omega) for the spin degrees of freedom, obtained by the Lanczos diagonalization method, well reproduce the low-energy spectrum of N(k,omega) of the 1D ionic Hubbard model. In addition, we show that these spectral peaks probe the dispersion of the spin-singlet excitations of the system and are observed in the wide parameter region of the MI phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.