Abstract

In real fluidized beds various fluidization regimes may occur simultaneously resulting in quite distinct hydrodynamic characteristics in various regions of the bed. Classical approaches, generally, use a step drag function with a single switching point to distinguish dense and dilute regimes. In the present study, a new integrated hydrodynamic model (drag and viscosity) is developed using a smooth logistic function with two switching points dividing a fluidized bed into three dense, dilute and mixed regimes which is more in accordance with reality. Gas volume fraction at minimum fluidization velocity and particle Geldart’s group are employed to decide switching between dense and dilute drag and viscosity models. A spatiotemporal dynamic algorithm is used to implement the integrated model into the open source CFD package OpenFOAM 2.1.1. Reasonable predictions of various hydrodynamic characteristics in three different experimental data sets demonstrate wide applicability of the new integrated hydrodynamic model to any fluidization regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.