Abstract

This research presents a novel approach for the dynamic monitoring of onion-like carbon nanoparticles inside colorectal cancer cells. Onion-like carbon nanoparticles are widely used in photothermal cancer therapy, and precise 3D tracking of their distribution is crucial. We proposed a limited-angle digital holographic tomography technique with unsupervised learning to achieve rapid and accurate monitoring. A key innovation is our internal learning neural network. This network addresses the information limitations of limited-angle measurements by directly mapping coordinates to measured data and reconstructing phase information at unmeasured angles without external training data. We validated the network using standard SiO2 microspheres. Subsequently, we reconstructed the 3D refractive index of onion-like carbon nanoparticles within cancer cells at various time points. Morphological parameters of the nanoparticles were quantitatively analyzed to understand their temporal evolution, offering initial insights into the underlying mechanisms. This methodology provides a new perspective for efficiently tracking nanoparticles within cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.