Abstract

[1] We construct the dynamic ocean topography (DOT) of the Arctic Ocean, for five ICESat campaigns (winter of 2004–2008), using sea surface height estimates in open leads. Results show that the mean winter DOT over the Arctic Ocean varies by ∼1 m and features a distinct dome of ∼40 cm over the Beaufort Sea. Standard deviation of the mean field is ∼20 cm. Spatial coherence between the five winter DOTs is consistently high (>0.9), whereas the coherence between the DOTs and the winter (DJFM) sea-level pressure fields over the Arctic Basin is variable. This suggests persistence of the underlying hydrodynamic processes at interannual time-scales compared to seasonal atmospheric forcing. Comparison of dynamic heights (DH) from hydrographic surveys and the DOT in 2008 shows a remarkable correlation of 0.92. The geostrophic velocity fields computed from the DOT and interpolated DH fields highlight the smaller scale oceanographic features in the satellite estimates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.