Abstract

Passive Brain-Computer interfaces (pBCIs) are a human-computer communication tool where the computer can detect from neurophysiological signals the current mental or emotional state of the user. The system can then adjust itself to guide the user toward a desired state. One challenge facing developers of pBCIs is that the system's parameters are generally set at the onset of the interaction and remain stable throughout, not adapting to potential changes over time such as fatigue. The goal of this paper is to investigate the improvement of pBCIs with settings adjusted according to the information provided by a second neurophysiological signal. With the use of a second signal, making the system a hybrid pBCI, those parameters can be continuously adjusted with dynamic thresholding to respond to variations such as fatigue or learning. In this experiment, we hypothesize that the adaptive system with dynamic thresholding will improve perceived game experience and objective game performance compared to two other conditions: an adaptive system with single primary signal biocybernetic loop and a control non-adaptive game. A within-subject experiment was conducted with 16 participants using three versions of the game Tetris. Each participant plays 15 min of Tetris under three experimental conditions. The control condition is the traditional game of Tetris with a progressive increase in speed. The second condition is a cognitive load only biocybernetic loop with the parameters presented in Ewing et al. (2016). The third condition is our proposed biocybernetic loop using dynamic threshold selection. Electroencephalography was used as the primary signal and automatic facial expression analysis as the secondary signal. Our results show that, contrary to our expectations, the adaptive systems did not improve the participants' experience as participants had more negative affect from the BCI conditions than in the control condition. We endeavored to develop a system that improved upon the authentic version of the Tetris game, however, our proposed adaptive system neither improved players' perceived experience, nor their objective performance. Nevertheless, this experience can inform developers of hybrid passive BCIs on a novel way to employ various neurophysiological features simultaneously.

Highlights

  • We have become quite adept at communicating with our computer systems and having them do what we wish

  • The goal of this paper is to evaluate if dynamic thresholding with a secondary neurophysiological signal can continuously personalize the adaptive system

  • All differences were significant at p < 0.05. These results show that both BCI conditions seem to have “over adapted” the game resulting on average in slower games and decreased player performance compared to the control condition

Read more

Summary

Introduction

We have become quite adept at communicating with our computer systems and having them do what we wish. This type of communication lacks the subtleties that accompany human-human interactions through non-verbal signals. This paper presents suggested improvements to the current state of pBCI development. With pBCIs, the user’s state is communicated to the computer without any conscious effort from the user and the system takes that into account to adapt itself to lead the user to an optimal state. Passive BCIs, as opposed to active BCIs, are mostly being developed for average users to improve their daily experiences rather than to replace other input devices such as using eye tracking instead of a mouse (Frisoli et al, 2012). As mentioned by Robert Jacob, “active BCIs have the potential to bring a great improvement to the lives of a small number of people, while passive BCIs can bring small improvements to the lives of a great number of people” (Jacob, 2017, p. 14)

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.