Abstract
SummaryWith the development of Internet of Things (IoT), more and more computation‐intensive tasks are generated by IoT devices. Due to the limitation of battery and computing capacity of IoT devices, these tasks can be offloaded to mobile edge computing (MEC) and cloud for processing. However, as the channel states and task generation process are dynamic, and the scales of task offloading problem and solution space size are increasing rapidly, the collaborative task offloading for MEC and cloud faces severe challenges. In this paper, we integrate the two conflicting offloading goals, which are maximizing the task finish ratio with tolerable delay and minimizing the power consumption of devices. We formulate the task offloading problem to balance the two conflicting goals. Then, we reformulate it as an MDP‐based dynamic task offloading problem. We design a deep reinforcement learning (DRL)‐based dynamic task offloading (DDTO) algorithm to solve this problem. Our DDTO algorithm can adapt to the dynamic and complex environment and adjust the task offloading strategies accordingly. Experiments are also carried out which show that our DDTO algorithm can converge quickly. The experiment results also validate the effectiveness and efficacy of our DDTO algorithm in balancing finish ratio and power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.