Abstract

As the missions and environments of unmanned aerial vehicles (UAVs) become increasingly complex in both space and time, it is essential to investigate the dynamic task assignment problem of heterogeneous multi-UAVs aiming at ground targets in an uncertain environment. Considering that most of these existing tasking methods are limited to static allocation in a deterministic environment, this paper firstly constructs the fuzzy multiconstraint programming model for heterogeneous multi-UAV dynamic task assignment based on binary interval theory, taking into account the effects of uncertain factors like target location information, mission execution time, and the survival probability of UAVs. Then, the dynamic task allocation strategy is designed, consisting of two components: dynamic time slice setting and the four-dimensional information grey wolf optimization (4DI-GWO) algorithm. The dynamic time slices create the dynamic adjustment of solving frequency and effect, and the 4DI-GWO algorithm is improved by designing the four-dimensional information strategy that expands population diversity and enhances global search capability and other strategies. The numerical analysis shows that the proposed strategy can effectively solve the dynamic task assignment problem of heterogeneous multi-UAVs under an uncertain environment, and the optimization of fitness values demonstrates improvements of 5~30% in comparison with other optimization algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.