Abstract
We present results on the behavior of the dynamic structure function in the short wave length limit using the equation of motion method. Within this framework we study the linear response of a quantum system to an infinitesimal external perturbation by direct minimization of the action integral. As a result we get a set of coupled continuity equations which define the self-energy. We evaluate the self-energy and the dynamic structure function in the short wavelength limit and show that sum rules up to the third moment are fulfilled. This implies, for instance, that the self-energy at short wavelengths and zero frequency is proportional to the kinetic energy per particle. An essential feature in this derivation is that the short range behavior of the two-particle distribution and the long wavelength phonon induced scattering are exactly satisfied. We calculate the condensate fraction and show that our results agree very well with the Monte Carlo simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.