Abstract

Understanding structural evolution in lithium-rich layered oxidized composites (LLO) is fundamental to design improved cathode materials for rechargeable lithium-ion batteries (LIBs). In particular, retrieving quantitative structural parameters are essential factors to unveil the hidden phases or atomic orderings affecting the properties of LIBs. The oxygen-vacancies heterogeneity is revealed in 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 (LR-NCM) during de-lithiation process via rigid structural refinements. Through the in-situ/ex-situ X-ray absorption spectroscopy (XAS) in synergy with first principles calculations, the dynamic structural (and electronic) evolution of oxygen vacancies is confirmed to be in the form of MnO2 (represents vacancy site) for Li2MnO3 component. With the formation of oxygen vacancies in Li2MnO3 component, the oxygen-vacancy-bearing structure MnO2 also play significant supporting role on its parent structure without obvious Mn ions activity. This result offers new perspectives on synergistic improvement in the electronic and structural evolution, which is the key to design high energy density cathode materials for next-generation lithium ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.