Abstract

Recently, many applications have used Peer-to-Peer (P2P) systems to overcome the current problems with client/server systems such as non-scalability, high bandwidth requirement and single point of failure. In this paper, we propose an efficient scheme to support efficient range query processing over structured P2P systems, while balancing both the storage load and access load. The paper proposes a rotating token scheme to balance the storage load by placing joining nodes in appropriate locations in the identifier space to share loads with already overloaded nodes. Then, to support range queries, we utilize an order-preserving mapping function to map keys to nodes in order preserving way and without hashing. This may result in an access load imbalance due to non-uniform distribution of keys in the identifier space. Thus, we propose an adaptive replication scheme to relieve overloaded nodes by shedding some load on other nodes to balance the access load. We derive a formula for estimating the overhead of the proposed adaptive replication scheme. In this study, we carry simulation experiments with synthetic data to measure the performance of the proposed schemes. Our simulation experiments show significant gains in both storage load balancing and access load balancing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.