Abstract

The near-tip field of a mode I crack growing steadily under plane strain conditions is studied. A key issue is whether strong discontinuities can propagate under dynamic conditions. Theories which impose rather restrictive assumptions on the structure of an admissible deformation path through a dynamically propagating discontinuity have been proposed recently. Asymptotic solutions for dynamic crack growth, based on such theories, do not contain any discontinuities. In the present work a broader family of deformation paths is considered and we show that a discontinuity can propagate dynamically without violating any of the mechanical constitutive relations of the material. The proposed theory for the propagation of strong discontinuities is corroborated by very detailed finite element calculations. The latter shows a plane of strong discontinuity emanating from the crack tip (with its normal pointing in the direction of crack advance) and moving with the tip. Elastic unloading ahead of and/or behind the plane of discontinuity and behind the crack tip have also been observed.The numerical investigation is performed within the framework of a boundary layer formulation whereby the remote loading is fully specified by the first two terms in the asymptotic solution of the elasto-dynamic crack tip field, characterized by K1, and T. It is shown that the family of near-tip fields, associated with a given crack speed, can be arranged into a one-parameter field based on a characteristic length, Lg, which scales with the smallest dimension of the plastic zone. This extends a previous result for quasi-static crack growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.