Abstract

This paper deals with a dynamic stability analysis of unidirectional fiber-reinforced composite viscoelastic plates subjected to compressive edge loads. The integrodifferential equations governing the stability problem are obtained by using, in conjunction with a Boltzmann hereditary constitutive law for a 3-D viscoelastic medium, a higher-order shear deformation theory of orthotropic plates. Such a theory incorporates transverse shear deformation, transverse normal stress, and rotatory inertia effects. The solution of the stability problem as considered within this paper concerns the determination of the critical in-plane edge loads yielding the asymptotic instability. Numerical applications, based on material properties derived within the framework of Aboudi’s micromechanical model, are presented and pertinent conclusions concerning the nature of the loss of stability and the influence of various parameters are outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.