Abstract

Enhancing soil organic matter in agricultural soils has potential to contribute to climate mitigation while also promoting soil health and resilience. However, soil carbon (C) sequestration projects are rare in C markets. One concern surrounding soil C is uncertainty regarding the permanence of newly sequestered soil C. This scientific uncertainty is exacerbated by differences in terminology used by scientists and policymakers, which impedes the integration of new scientific findings regarding soil carbon longevity into evidence-based policies. Here, we review the evolution of understanding of soil C lifespan and the language used to describe it in both scientific and policy sectors. We find that recent scientific findings that have bearing on soil C lifespan are not part of discussions surrounding C policy, and conversely, policymaker concerns are not clearly addressed by scientific research. From a policy perspective, soil C is generally assumed to be a vulnerable pool at risk of being quickly lost via microbial degradation or other avenues of physical loss if soil C building practices are not maintained indefinitely. This assumption has been challenged by recent scientific advances demonstrating that microbial consumption and transformation of plant-derived C actually necessary for the long-term storage of soil organic matter. Here, we argue that soil C longevity can best be understood as resulting from continual movement and transformation of organic compounds throughout the soil matrix, and show that this definition is directly at odds with how soil C longevity is represented in current policies. Given current interest in new policies to promote soil C sequestration activities, resolving these definitions is critical. We further identify priority areas for future research in order to answer key policymaker questions about soil C lifespan, and to help develop new tools and benchmarks necessary to assess efficacy of agricultural soil C sequestration efforts.

Highlights

  • How permanently will carbon (C) stored in soil remain sequestered? This question is often posed in public policy concerned with C sequestration offsets (Smith, 2005; Thamo and Pannell, 2016; Smith et al, 2019), but is rarely considered by the scientific community in those terms, and rarely addressed

  • In the flow-based model of C persistence developed here, soil organic matter (SOM) is simultaneously cycled through microbial biomass and stored via interactions with soil minerals that effectively introduce friction into the flow of C through the soil profile

  • Because nutrient release and cycling depends on microbial decomposition of SOM, this co-benefit has historically been understood to be at odds with intentions of sequestering soil C (Janzen, 2006)

Read more

Summary

INTRODUCTION

How permanently will carbon (C) stored in soil remain sequestered? This question is often posed in public policy concerned with C sequestration offsets (Smith, 2005; Thamo and Pannell, 2016; Smith et al, 2019), but is rarely considered by the scientific community in those terms, and rarely addressed. New hypotheses based on these findings posit that rapid cycling can still result in long-term SOM persistence, with mineral interactions temporarily slowing the flow of SOM rather than conferring permanent protection (Cagnarini et al, 2019) Empirical support for this hypothesis comes from recent high-resolution mass spectrometry work demonstrating that as dissolved organic C moves downward through the soil profile, its composition shifts toward mid-weight, saturated molecules with a high degradation index (Roth et al, 2019). Instead of being permanently sorbed to minerals, MAOM may de-sorb and re-enter soil solution as dissolved organic C, be transported downward in the soil profile, be consumed again by soil microbes and incorporated into biomass, and eventually become re-sorbed onto mineral surfaces (Woolf and Lehmann, 2019) Given these advances, we advocate for an expanded definition of SOM persistence that explicitly recognizes the critical importance of the movement of soil C molecules for their longterm preservation (Box 1). These existing policy precedents, combined with a better scientific understanding of soil C permanence, vis-à-vis persistence, can help policymakers evaluate potential performance of climate projects on soil C sequestration and inform necessary funding structures (Bossio et al, 2020)

DISCUSSION
Findings
CONCLUSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.