Abstract

Accurate wind farm cluster power forecasting is of great significance for the safe operation of the power system with high wind power penetration. However, most of the current neural network methods used for wind farm cluster power forecasting have the following three problems: (1) lack of consideration of dynamic spatio-temporal correlation among adjacent wind farms; (2) simultaneously forecasting all wind farms’ power to obtain the total power will produce numerous error sources; (3) ignoring the causal relationship among input variables. Therefore, to solve the above problems, this paper proposes an ultra-short-term wind farm cluster power forecasting method based on dynamic spatio-temporal correlation and hierarchical directed graph structure. Firstly, three different types of nodes (wind speed nodes, wind power nodes, and target node) and input samples are defined, and then the spatio-temporal correlation matrices that can describe the correlation of adjacent wind farms are also calculated. Secondly, directed edges are defined to connect different nodes in order to obtain the hierarchical directed graph structure. Finally, this graph structure with dynamic spatio-temporal correlation information is used to train the forecasting model. In case study, compared with other benchmark methods, the proposed method shows excellent performance in improving accuracy of power forecasting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.