Abstract

The discontinuous nature of the solar energy forces to study the dynamic behavior of solar plants to characterize their operations, to deepen their process understanding and to improve the performance and maintenance. The present paper focuses on the dynamic simulation and control of concentrating solar plants with the aim to define a reasonably simplified layout as well as to highlight the main issues to characterize the process dynamics of these energy systems and their related energy storages. Detailed first-principles mathematical models of key unit operations are developed, implemented, and integrated into commercial codes to improve the reliability of the plant dynamic simulation as well as the prevision accuracy. The case of Archimede concentrating solar power plant with the related two-tanks direct thermal energy storage technology is investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.