Abstract

A new simulation framework was created for modeling the dynamics of arbitrarily shaped particles dispersed in Newtonian fluid. Theoretical complexity usually restricts suspension simulations to those for spheroids. This new simulation is loosely based on the Stokesian Dynamics method including long range hydrodynamic interaction and uses spheres as building components for greater particulates of arbitrary shape. This approach is capable of accurately reproducing the dynamics of an isolated arbitrarily shaped particle. As verification, the simulated results are compared against known results for a rod-like particle. An elongated rod-shaped structure made from linked spheres is shown to reproduce the well-known elongated ellipsoidal particle dynamics described by [Jeffrey Proc R Soc Lond A 102:161–179, 1923]. The predicted orbital period and spin rates for a fiber in shear are reproduced and compare well with theoretical prediction over a wide aspect ratio range. Predicted particle dynamics for other shaped particles are then demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.