Abstract

We study tandem queueing systems with finite buffers in which servers work more efficiently in teams than on their own and the synergy among collaborating servers can be task-dependent. Our goal is to determine the dynamic server assignment policy that maximizes the long-run average throughput. When each server works with the same ability at each task that she/he is assigned to, we show that any nonidling policy where all servers work in teams of two or more at all times is optimal. On the other hand, when the server abilities are task-dependent, we show that for Markovian systems with two stations and two servers, depending on the synergy among the servers, the optimal policy either assigns the two servers to different stations when possible, or lets them work in a team at all times. Finally, for larger Markovian systems, we provide sufficient conditions that guarantee that the optimal policy has all servers working together at all times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.