Abstract

The dynamic Friedel sum rule (FSR) is derived within the second-order Born (B2) approximation for an ion that moves in a fully degenerate electron gas and for an arbitrary spherically-symmetric electron–ion interaction potential. This results in an implicit equation for the dynamic B2 screening parameter which depends on the ion atomic number Z1 unlike the first-order Born (B1) dynamic screening parameter reported earlier by some authors. Furthermore, for typical metallic densities our analytical results for the Yukawa and hydrogenic potentials are compared, for both positive and negative ions, to the exact screening parameters calculated self-consistently by imposing the exact dynamic FSR requirement to the scattering phase shifts. The B1 and B2 screening parameters agree excellently with the exact values at large velocities, while at moderate and low velocities the B1 approximation deviates from the exact solution whereas the B2 approximation still remains close to it. In addition, a Padé approximant to the Born series yields a further improvement of the perturbative approach, showing an excellent agreement on the whole velocity range in the case of antiprotons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.