Abstract
Abstract Vacuum freeze-dried fruit processes consisting of heating and holding are modelled as a mixed batch scheduling with the objective of minimizing the makespan. The jobs differ from each other in job family, size, weight and ready time. The batch processing time is determined by the longest job and the total weight of the jobs in the batch. A mixed-integer linear programming model is developed and tested with small-scale examples. Typical batch scheduling strategies are analysed and a machine-based dynamic programming strategy is proposed. The machine-based dynamic scheduling strategy is applied to design improved genetic and particle swarm optimization algorithms, which demonstrate the effectiveness of this strategy. The worst-case ratio of the algorithms using machine dynamic programming strategy are proved. Numerical experiments show that the heuristic algorithm, genetic algorithm, and particle swarm optimization algorithm based on machine dynamic scheduling strategy outperform related algorithms using greedy and job-based dynamic scheduling strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.