Abstract
We propose a probabilistic methodology to estimate a demand curve for operating reserves, where the curve represents the amount that a system operator is willing to pay for these services. The demand curve is quantified by the cost of unserved energy and the expected loss of load, accounting for uncertainty from generator contingencies, load forecasting errors, and wind power forecasting errors. The methodology addresses two key challenges in electricity market design: integrating wind power more efficiently and improving scarcity pricing. In a case study, we apply the proposed operating reserve strategies in a two-settlement electricity market with centralized unit commitment and economic dispatch and co-optimization of energy and reserves. We compare the proposed probabilistic approach to traditional operating reserve rules. We use the Illinois power system to illustrate the efficiency of the proposed reserve market modeling approach when it is combined with probabilistic wind power forecasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.