Abstract

We have observed a dynamic saturation of an intersublevel transition in ${\mathrm{I}\mathrm{n}\mathrm{A}\mathrm{s}/\mathrm{I}\mathrm{n}}_{x}{\mathrm{Al}}_{1\ensuremath{-}x}\mathrm{As}$ quantum dots related to the discrete nature of electron states using midinfrared femtosecond spectroscopy. This dynamic saturation is a consequence of the gradual filling of the discrete quantum-dot electron states due to the capture of electrons injected in the barrier. Our interpretation of the differential transmission experiments is confirmed by a comparison with a rate-equation model with the capture and intersublevel relaxation time as fit parameters yielding 10 ps and 1 ps, respectively. We discuss the mechanism responsible for these relaxation times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.