Abstract

Human motion capture embeds rich detail and style which is difficult to generate with competing animation synthesis technologies. However, such recorded data requires principled means for creating responses in unpredicted situations, for example reactions immediately following impact. This paper introduces a novel technique for incorporating unexpected impacts into a motion capture-driven animation system through the combination of a physical simulation which responds to contact forces and a specialized search routine which determines the best plausible re-entry into motion library playback following the impact. Using an actuated dynamic model, our system generates a physics-based response while connecting motion capture segments. Our method allows characters to respond to unexpected changes in the environment based on the specific dynamic effects of a given contact while also taking advantage of the realistic movement made available through motion capture. We show the results of our system under various conditions and with varying responses using martial arts motion capture as a testbed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.