Abstract

In the classical static optimal reinsurance problem, the cost of capital for the insurer's risk exposure determined by a monetary risk measure is minimized over the class of reinsurance treaties represented by increasing Lipschitz retained loss functions. In this paper, we consider a dynamic extension of this reinsurance problem in discrete time which can be viewed as a risk-sensitive Markov Decision Process. The model allows for both insurance claims and premium income to be stochastic and operates with general risk measures and premium principles. We derive the Bellman equation and show the existence of a Markovian optimal reinsurance policy. Under an infinite planning horizon, the model is shown to be contractive and the optimal reinsurance policy to be stationary. The results are illustrated with examples where the optimal policy can be determined explicitly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.