Abstract

In this paper, the dynamic performance of an unconventional two-spool flow control servovalve using a pressure control pilot is analyzed. Such valves are less expensive than typical servovalves but also tend to be limited in their dynamic performance. Based on a previously developed eight state nonlinear model, we develop a simplified linear model which is able to capture the essential dynamics of the valve. Using root locus analysis method, the limitation in dynamic performance is shown to be due to a “zero” introduced by the structure of the interconnection of the subsystems. Design parameters that move the zero further to the left half plane, and do not adversely affect other steady-state criteria are identified. The effectiveness of these parameters to improve the dynamic performance is demonstrated. This analysis demonstrates how the structure of the interactions between subsystems in a dynamic component, such as a hydraulic valve, can critically limit the dynamic performance of the component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.