Abstract

Understanding the dynamic nature of protein abundances provides insights into protein turnover not readily apparent from conventional, static mass spectrometry measurements. This level of data is particularly informative when surveying protein abundances in biological systems subjected to large perturbations or alterations in environment such as cyanobacteria. Our current analysis expands upon conventional proteomic approaches in cyanobacteria by measuring dynamic changes of the proteome using a (13)C(15)N-l-leucine metabolic labeling in Cyanothece ATCC51142. Metabolically labeled Cyanothece ATCC51142 cells grown under nitrogen-sufficient conditions in continuous light were monitored longitudinally for isotope incorporation over a 48 h period, revealing 414 proteins with dynamic changes in abundances. In particular, proteins involved in carbon fixation, pentose phosphate pathway, cellular protection, redox regulation, protein folding, assembly, and degradation showed higher levels of isotope incorporation, suggesting that these biochemical pathways are important for growth under continuous light. Calculation of relative isotope abundances (RIA) values allowed the measurement of actual active protein synthesis over time for different biochemical pathways under high light exposure. Overall results demonstrated the utility of "non-steady state" pulsed metabolic labeling for systems-wide dynamic quantification of the proteome in Cyanothece ATCC51142 that can also be applied to other cyanobacteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.