Abstract
KCNQ1, also known as Kv7.1, is a voltage gated potassium channel that associates with the KCNE protein family. Mutations in this protein has been found to cause a variety of diseases including Long QT syndrome, a type of cardiac arrhythmia where the QT interval observed on an electrocardiogram is longer than normal. This condition is often aggravated during strenuous exercise and can cause fainting spells or sudden death. KCNE1 is an ancillary protein that interacts with KCNQ1 in the membrane at varying molar ratios. This interaction allows for the flow of potassium ions to be modulated to facilitate repolarization of the heart. The interaction between these two proteins has been studied previously with cysteine crosslinking and electrophysiology. In this study, electron paramagnetic resonance (EPR) spectroscopy line shape analysis in tandem with site directed spin labeling (SDSL) was used to observe changes in side chain dynamics as KCNE1 interacts with KCNQ1. KCNE1 was labeled at different sites that were found to interact with KCNQ1 based on previous literature, along with sites outside of that range as a control. Once labeled KCNE1 was incorporated into vesicles, KCNQ1 (helices S1-S6) was titrated into the vesicles. The line shape differences observed upon addition of KCNQ1 are indicative of an interaction between the two proteins. This method provides a first look at the interactions between KCNE1 and KCNQ1 from a dynamics perspective using the full transmembrane portion of KCNQ1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.