Abstract

This paper presents a novel particle allocation approach to particle filtering which minimizes the total tracking distortion for a fixed number of particles over a video sequence. We define the tracking distortion as the variance of the error between the true state and estimated state and use rate-distortion theory to determine the optimal particle number and memory size allocation under fixed particle number and memory constraints, respectively. We subsequently provide an algorithm for simultaneous adjustment of the proposal variance and particle number for optimal particle allocation in video tracking systems. Experimental results are used to evaluate the proposed video tracking system and demonstrate its utility for target tracking in numerical examples and video sequences. We demonstrate the superiority of the proposed dynamic proposal variance and optimal particle allocation algorithm in comparison to traditional particle allocation methods, i.e., a fixed number of particles per frame.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.