Abstract

Wildfires not only severely damage the natural environment and global ecological balance but also cause substantial losses to global forest resources and human lives and property. Unprecedented fire events such as Australia's bushfires have alerted us to the fact that wildfire prediction is a critical scientific problem for fire management. Therefore, robust, long-lead models and dynamic predictions of wildfire are valuable for global fire prevention. However, despite decades of effort, the dynamic, effective, and accurate prediction of wildfire remains problematic. There is great uncertainty in predicting the future based on historical and existing spatiotemporal sequence data, but with advances in deep learning algorithms, solutions to prediction problems are being developed. Here, we present a dynamic prediction model of global burned area of wildfire employing a deep neural network (DNN) approach that produces effective wildfire forecasts based on historical time series predictors and satellite-based burned area products. A hybrid DNN that combines long short-term memory and a two-dimensional convolutional neural network (CNN2D-LSTM) was proposed, and CNN2D-LSTM model candidates with four different architectures were designed and compared to construct the optimal architecture for fire prediction. The proposed model was also shown to outperform convolutional neural networks (CNNs) and the fully connected long short-term memory (FcLSTM) approach using the refined index of agreement and evaluation metrics. We produced monthly global burned area spatiotemporal prediction maps and adequately reflected the seasonal peak in fire activity and highly fire-prone areas. Our combined CNN2D-LSTM approach can effectively predict the global burned area of wildfires 1 month in advance and can be generalized to provide seasonal estimates of global fire risk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.