Abstract
This study develops a dynamic bus arrival time prediction model using the data collected by the automatic vehicle location and automatic passenger counter systems. It is based on the Kalman filter algorithm with a two-dimensional state variable in which the prediction error in the most recent observation is used to optimize the arrival time estimate for each downstream stop. The impact of schedule recovery is considered as a control factor in the model to reflect the driver's schedule recovery behavior. The algorithm performs well when tested with a set of automatic vehicle location–automatic passenger counter data collected from a real-world bus route. The algorithm does not require intensive computation or an excessive data preprocessing effort. It is a promising approach for real-time bus arrival time prediction in practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.