Abstract
Although feature-based computer-aided process planning plays a vital role in automating and integrating design and manufacturing for efficient production, its off-line properties prohibit the shop floor controllers from rapidly coping with unexpected production errors. The objective of the paper is to suggest a neural network-based dynamic planning model, by which the shop floor controllers determine cutting parameters in real-time based on shop floor status. At off-line is the dynamic planning model constructed as a neural network form, and then embedded into each removal feature. The dynamic planning model will be executed by the shop floor controllers to determine the cutting parameters. A prototype system is constructed to validate whether the dynamic planning model is capable of determining dynamically and efficiently the cutting parameters for a particular set of shop operating factors. Owing to the dynamic planning model, the shop floor controller will increase flexibility and robustness by rapidly and adaptively determining the cutting parameters in unexpected errors occurring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.