Abstract
The increasing demand for virtual reality applications in several scientific disciplines feeds new research perspectives dealing with robotics, automation, and computer science. In this context, one of the topics is the design of advanced force-feedback devices allowing not only kinesthetic interaction with virtual objects but also locomotion and navigation inside virtual worlds. This has the main advantage to stimulate human vestibular apparatus, thus increasing the overall realism of simulation. Particularly, this paper deals with mobile haptic interfaces (MHIs), built by combining standard force-feedback devices with mobile platforms. We investigated which factors may affect the transparency of this kind of devices, identifying in mobile robot dynamics a possible cause of loss of transparency. Hence, in this paper, we present a method to analyze dynamic performance of an MHI and some basic guidelines to design controller in order to meet desired specifications. Experimental validation of the theoretical results is reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.