Abstract

This paper presents a control scheme for the dynamic performance improvement of an AC/DC converter using the model predictive direct power control (MPDPC) with a duty cycle. In the MPDPC, the active and reactive power is simultaneously controlled with a single cost function. If either of the two control targets has a large power variation, the control weight is concentrated on one side, which causes mutual interference. Because of such mutual interference, the control dynamics of the AC/DC converter deteriorates. Due to the control weight being concentrated on one side using the single cost function, even if the control dynamics of the other side decreases, the dynamic performance of the system is improved by reconfiguring the cost function that has the weighting factor to minimize the decline of the system dynamics that is caused by the mutual interference. The effectiveness of the proposed control scheme is verified by comparing its results with those of the conventional MPDPC. The results are obtained through the simulations and experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.