Abstract

Due to their proteinaceous structure, monoclonal antibodies (mAbs) are susceptible to irreversible aggregation, with harmful consequences on drug efficacy and patient safety. To mitigate this risk in modern biopharmaceutical processes, it is critical to comply with current good manufacturing practices (cGMP) and pursue operating strategies minimizing irreversible aggregation whilst also maximizing mAb throughput. These conflicting objectives are targeted in this study by formulating and analyzing an integrated dynamic model accounting for both cultivation and aggregation of mAbs from a Chinese Hamster Ovary (CHO) cell line. Two manipulated dynamic variables are considered here in simulation studies: firstly temperature manipulation within a batch reactor, and secondly feed flow manipulation within a series of isothermal fed-batch reactors. Following this, dynamic optimization investigations have been conducted, firstly with the single objective of maximizing mAb throughput and secondly with multiple (two) objectives of maximizing mAb throughput while also minimizing irreversible aggregate content, simultaneously. The study provides key insight into tradeoffs of how simultaneous temperature and feed flowrate manipulation affects mAb throughput and aggregation inside bioreactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.