Abstract

AbstractVirtual synchronous generators (VSGs) are essential for the high penetration of renewable energy sources. VSGs have virtual rotating inertia, a damping effect, and synchronising power such as actual SGs. Such features of VSGs offer a promising structure to improve the stability of power systems. VSGs are required to suppress power and system frequency oscillations. In addition, VSGs must operate within a current limit since they are vulnerable to the overcurrent, unlike actual SGs. The authors propose a novel dynamic and optimal VSG to enhance the frequency stability in power systems while guaranteeing the current limit. The proposed approach determines an optimal tuple of inertia and damping of VSG online and guarantees the current limit with the use of a circuit model. The effectiveness of the proposed method is demonstrated via experiments, comparing it with the conventional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.