Abstract

Dynamic nuclear polarization (DNP) experiments in rotating solids have been performed for the first time using biradicals rather than monomeric paramagnetic centers as polarizing agents. Specifically, two TEMPO radicals were tethered with a poly(ethylene glycol) chain of variable length where the number of glycol units was 2, 3, or 4. NMR experiments show that the signal observed in DNP experiments is approximately inversely proportional to the length of the chain. Thus, the shorter chain with larger electron dipolar couplings yields larger enhancements. The size of the enhancement is a factor of 4 larger than obtained with the identical concentration of monomeric nitroxide radicals achieving a value of approximately 175 for the n = 2 chain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.