Abstract
Multiplex technologies for interrogating multiple biomarkers in concert have existed for several decades; however, methods to evaluate multiple epitopes on the same analyte remain limited. This report describes the development and optimization of a multiplexed immunobead assay for serological testing of common immunoglobulin isotypes (e.g., IgA, IgM, and IgG) associated with an immune response to SARS-CoV-2 infection or vaccination. Assays were accomplished using a flow-based, multiplex fluorescent reader with dual-channel capability. Optimizations focused on analyte capture time, detection antibody concentration, and detection antibody incubation time. Analytical assay performance characteristics (e.g., assay range (including lower and upper limits of quantitation); and intra- and inter-assay precision) were established for either IgG/IgM or IgA/IgM serotype combination in tandem using the 'dual channel' mode. Analyte capture times of 30 min for IgG, 60 min for IgM, and 120 min for IgA were suitable for most applications, providing a balance of assay performance and throughput. Optimal detection antibody incubations at 4 µg/mL for 30 min was observed and are recommended for general applications, given the overall excellent precision (percent coefficient of variance (%CV) ≤ 20%) and sensitivity values observed. The dynamic range for the IgG isotype spanned several orders of magnitude for each assay (Spike S1, Nucleocapsid, and Membrane glycoproteins), which supports robust titer evaluations at a 1:500 dilution factor for clinical applications. Finally, the optimized protocol was applied to monitoring Spike S1 seroconversion for subjects (n = 4) that completed a SARS-CoV-2 vaccine regimen. Within this cohort, Spike S1 IgG levels were observed to reach maximum titers at 14 days following second dose administration, at a much higher (~40-fold) signal intensity than either IgM or IgA isotypes. Interestingly, we observed highly variable Spike S1 IgG titer decay rates that were largely subject-dependent were observed, which will be the topic of future studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.