Abstract

One of the primary causes of mechanical face seal failure is rotor vibration. Traditional dynamic seal models often cannot fully explain failure mechanisms. The dynamic models of seals proposed in this paper, including those developed by the authors, are valuable for predicting seal dynamics during operation in specific turbomachinery and for explaining the causes of seal failure. The single-mass dynamic model is suitable for analyzing the dynamics of contact mechanical face seals and simply designed dry gas seals. The two-mass dynamic model is used to investigate the operational dynamics processes of classical dry gas seals under complex loading conditions. The three-mass dynamic model is used to study various complex types of mechanical face seals. This model can determine the normal operating condition range and explain leakage mechanisms in the presence of excessive rotor vibrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.