Abstract
To design and precisely control a manipulator requires a representative dynamic model of the system. This paper presents the derivation of a rigid-link model for the serial manipulator, which reduces all of the arm’s dynamic properties to their effective values at the generalized inputs. The component terms of the model are readily calculated from the dynamic influence coefficients, which are based only on the geometry of the system. All necessary influence coefficients for serial manipulators are given in a particularly simple form. The model formulation keeps the system parameters and the input dynamics explicit in the controlling equations of motion, such that analysis and dynamic response results can be obtained in the most direct manner. Dynamic analysis results for an industrial manipulator are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.