Abstract

Hydrogen and fuel cells are widely regarded as the key to energy solutions for the 21st century. These technologies will contribute significantly to a reduction in environmental impact, enhanced energy security and development of new energy industries. Fuel cells operating with hydrogen have the potential to contribute to the transition for a future sustainable energy system with low-CO2 emissions. In this paper a dynamic PEM fuel cell model, implemented in Matlab/Simulink, is presented. In order to estimate the PEM fuel cell model parameters, an optimization based approach is used. The optimization is carried out using the Simulated Annealing (SA) algorithm. This optimization process evolves converging to a minimum of the objective function. The flexibility and robustness of SA as a global search method are extremely important advantages of this method. A good agreement between experimental and simulated results is observed. This optimized PEM fuel cell model can significantly help designers of fuel cell systems by providing a tool to perform accurate design and consequently to improve system efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.