Abstract

Dynamic fracture and delamination of unidirectional graphite/epoxy composites are investigated for end-notched flexure (ENF) and center-notched flexure (CNF) pure mode II loading configurations using a modified split Hopkinson pressure bar. Results show that delamination and energy absorbed in fracture increase with impact energy with CNF>ENF. A power law analytical model reasonably describes the variation of energy release rate with delamination and energy absorbed. A crack embedded deeper in a specimen (as in CNF) contributes more to dynamic fragmentation than cracks at the surface or near the edge (as in ENF). Hackle features on mode II fracture surfaces decrease with impact energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.