Abstract

To find turbulent flow structure inside meandering channels, three physical models of river meanders representing strongly curved bend, mild bend and elongated symmetrical meander loop were tested in this paper. Instantaneous velocity data in three dimensions were measured using Micro-ADV at different cross sections of these models. Depth averaged velocity vectors, streamwise velocity, secondary currents, turbulent and mean flow kinetic energy were investigated with respect to the sediment deposition pattern. In order to gain more regarding the force acting the sediment particles, three dimensional velocity fluctuations were analyzed in detailed inside the elongated symmetrical meander loop. Occurrence frequency, transition probability and angle of attack for different events were also computed for the points close to the bed. Of the present results, the importance of sweeps and ejections on sediment deposition can be detected. Further, distribution of bursting events is presented through the water column and compared the results with the previous works. Importantly, occurrence of fluctuating velocities in three dimensions at different locations inside the river meanders in addition to the effect of mean flow and turbulent components is responsible for sediment transport. Streamwise velocity distribution through the depth is also compared with some previous mathematical models. Researchers seeking the better control over the river morphology can apply this method without sacrificing much time and cost. This study is also included some insights to be pursued by future works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.