Abstract
We consider two multi-product dynamic lot size models with one-way substitution, where the products can be indexed such that a lower-index product may be used to substitute for the demand of a higher-index product. In the first model, the product used to meet the demand of another product must be physically transformed into the latter and incur a conversion cost. In the second model, a product can be directly used to satisfy the demand for another product without requiring any physical conversion. Both problems are generally computationally intractable. We develop dynamic programming algorithms that solve the problems in polynomial time when the number of products is fixed. A heuristic is also developed, and computational experiments are conducted to test the effectiveness of the heuristic and the efficiency of the optimal algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.