Abstract

BackgroundThe bactericidal activity of an antimicrobial drug is generally assessed by in vitro bacterial time-kill experiments which do not include any components of the immune system, even though the innate immunity, the primary host defence, is probably able to kill a large proportion of pathogenic bacteria in immunocompetent patients.We developed an in vitro tripartite model to investigate the joint action of C57Bl/6 murine bone-marrow-derived macrophages and cephalexin on the killing of Staphylococcus aureus.ResultsBy assessing the bactericidal effects on four bacterial inoculum sizes, we showed that macrophages can cooperate with cephalexin on inoculum sizes lower than 106 CFU/mL and conversely, protect S. aureus from cephalexin killing activity at the highest inoculum size. Cell analysis by flow cytometry revealed that macrophages were rapidly overwhelmed when exposed to large inoculums. Increasing the initial inoculum size from 105 to 107 CFU/mL increased macrophage death and decreased their ability to kill bacteria from six hours after exposure to bacteria. The addition of cephalexin at 16-fold MIC to 105 and 106 CFU/mL inoculums allowed the macrophages to survive and to maintain their bactericidal activity as if they were exposed to a small bacterial inoculum. However, with the highest inoculum size of 107 CFU/mL, the final bacterial counts in the supernatant were higher with macrophages plus cephalexin than with cephalexin alone.ConclusionsThese results suggest that if the bacterial population at the infectious site is low, as potentially encountered in the early stage of infection or at the end of an antimicrobial treatment, the observed cooperation between macrophages and cephalexin could facilitate its control.

Highlights

  • The bactericidal activity of an antimicrobial drug is generally assessed by in vitro bacterial time-kill experiments which do not include any components of the immune system, even though the innate immunity, the primary host defence, is probably able to kill a large proportion of pathogenic bacteria in immunocompetent patients

  • We investigated the effects of an antimicrobial drug, cephalexin, a first-generation cephalosporin which does not penetrate macrophages [17, 18] and macrophages derived from murine bone marrow on bacteria

  • We showed that when the extracellular bacterial populations were reduced by cephalexin over time, the percentages of bacteria associated with macrophages was reduced but the viability of macrophages and their ability to kill bacteria increased

Read more

Summary

Introduction

The bactericidal activity of an antimicrobial drug is generally assessed by in vitro bacterial time-kill experiments which do not include any components of the immune system, even though the innate immunity, the primary host defence, is probably able to kill a large proportion of pathogenic bacteria in immunocompetent patients. Staphylococcus aureus is a major human and veterinary pathogen causing significant morbidity and mortality. It causes a diverse array of infections ranging from relatively minor skin and wound infections to more serious and life-threatening diseases such as endocarditis, osteomyelitis and sepsis [1]. Since one of the first steps in the control of infection in vivo is the phagocytosis and killing of bacterial cells, the use of an in vitro dynamic cellular model to investigate the overall interactions involving bacteria, antimicrobial drugs and phagocytes over time constitutes an advantageous tool compared to classical in vitro methods that often ignore the contribution of the host immune defence system to bacterial eradication

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.