Abstract

In this paper, we propose a motion estimation method based on a feed-forward radial basis network for grasping arbitrary moving objects. We first employ a kernel correlation filtering (KCF) algorithm to track the target position in real-time and establish the motion model of the target. Using the feed-forward radial base network, we then adjust the sampling time of the Kalman filter (KF) to predict the motion parameters of the target. Since that, we can reduce the computing time and improve the accuracy of the estimation of the motion parameters. Compared with the feed-forward perceptron network, the proposed method shortens the required time for grasping by 20%, which can avoid a failure grasp due to the arbitrary movement of the object in grasping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.