Abstract
Patients with attention-deficit/hyperactivity disorder (ADHD) have shown abnormal functional connectivity and network disruptions at the whole-brain static level. However, the changes in brain networks in ADHD patients from dynamic functional connectivity (DFC) perspective have not been fully understood. Accordingly, we executed DFC analysis on resting-state fMRI data of 25 ADHD patients and 27 typically developing (TD) children. A sliding window and Pearson correlation were used to construct the dynamic brain network of all subjects. The k-means+ + clustering method was used to recognize three recurring DFC states, and finally, the mean dwell time, the fraction of time spent for each state, and graph theory metrics were quantified for further analysis. Our results showed that ADHD patients had abnormally increased mean dwell time and the fraction of time spent in state 2, which reached a significant level (p < 0.05). In addition, a weak correlation between the default mode network was associated in three states, and the positive correlations between visual network and attention network were smaller than TD in three states. Finally, the integration of each network node of ADHD in state 2 is more potent than that of TD, and the degree of node segregation is smaller than that of TD. These findings provide new evidence for the DFC study of ADHD; dynamic changes may better explain the developmental delay of ADHD and have particular significance for studying neurological mechanisms and adjuvant therapy of ADHD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.